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Abstract 

This paper extends the well-known Lee-Carter model used for forecasting mortality 

rates by utilizing a new class of time series models, known as Generalized 

Autoregressive Score (GAS) or Dynamic Conditional Score (DCS) models. This 

framework can be used to derive a wide range of non-Gaussian time series models with 

time varying coefficients and has shown to be very successful in financial applications. 

In this paper we propose five probability models (Poisson, binomial, negative binomial, 

Gaussian and beta) based on the GAS framework to estimate the Lee-Carter parameters 

and dynamically forecast the mortality rates using a single unified step.  The models are 

applied to the mortality rates time series for the male population of the United States, 

Sweden, Japan and the UK. Diagnostic tests are performed on quantile residuals, model 

selection is made via AIC and predictive accuracy of the models is compared using the 

Diebold-Mariano test. We conclude that, amongst the proposed models, the negative 

binomial extension of the Lee-Carter model is the most appropriate for forecasting 

mortality rates. 
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1. Introduction 

The choice of a suitable model for forecasting mortality rates is essential when 

evaluating the solvency of life insurers. Mortality forecasting is used to form the best 

estimate of future commitments to policyholders and assess the required level of risk-

based capital. Given the observed downward trend in mortality rates over time for many 

industrialized countries, it is important to adopt statistical models that can accurately 

and robustly predict the longevity gains. The Lee-Carter (1992) model is one of the 

most well-known models for forecasting mortality rates. With this model, the time 

series of the log mortality rates of each age is described by an age-specific intercept   

plus a common trend for all age groups multiplied by an age-specific coefficient. The 

model employs singular value decomposition (SVD) and least squares (OLS) to extract 

both the common trend and all age-specific parameters.  ARIMA models are typically 

used to extrapolate the common trend, making it possible to forecast mortality rates for 

any age group. 

Many extensions of the Lee-Carter model have been proposed, as shown in Pitacco et 

al. (2009). Brouhns et al. (2002) presented an improvement on the Lee-Carter method, 

considering that the main weakness of the OLS estimated by SVD is that the errors are 

assumed to be homoscedastic. They adapted the Lee–Carter model by supposing that 

the number of deaths follows a Poisson distribution (which is intrinsically 

heteroscedastic), with parameters estimated using an iterative method for log-linear 

models with bilinear terms. The authors also use ARIMA models to forecast the 

mortality rates. Renshaw and Haberman (2006) also assumed that the number of deaths 

is Poisson distributed and incorporated cohort effects into the Lee-Carter methodology. 

In contrast, Cossette et al. (2007) and Haberman and Renshaw (2008) explored a 

binomial version of the Lee-Carter model. Delward et al. (2007) considered the over-

dispersion present in the mortality data and assumed that the number of deaths follows a 

negative binomial distribution, extending the Lee-Carter model. De Jong and Tickle 

(2006) used the Kalman filter to estimate the Lee-Carter model, assuming that the 

disturbance terms are normally distributed. Chen et al.(2014) presented a dynamic 

multi-population mortality model based on a two-factor copula whose parameters are 

assumed time-varying via the Generalized Autoregressive Score (GAS) updating 

mechanism. 

The main contribution of this paper is to extend the Lee-Carter model, keeping the 

common trend structure adopted in this framework, but considering several competing 

conditional distributions for different outcome variables, namely, the mortality rates and 

the number of deaths.  Using a new class of observation-driven time series models, 

known as Generalized Autoregressive Score   (GAS, by Creal, Koopman et al. (2008, 

2013)) or Dynamic Conditional Score model (DCS, following Harvey (2013)), we 

estimate, forecast and simulate mortality rates trends for different age groups.  In GAS 

models, the mechanism for updating the parameters that change over time uses the 

scaled score of the likelihood function. Creal et al. (2013) argue that the use of the score 
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for updating time-varying parameters is intuitive given that it defines the steepest ascent 

direction for improving the model’s local fit in terms of the likelihood or density at time 

  given the current position of that parameter.  Blasques et al. (2015) have justified the 

GAS updating mechanism using optimality arguments based on Kullback-Leibler 

distance. Analogous to the Generalized Linear Model (GLM), in the GAS framework it 

is also necessary to tailor appropriate links functions, so that parameters are constrained 

to appropriate subsets of the real line. 

Since GAS models are applicable to a wide class of non-Gaussian conditional 

distributions, an advantage of our Lee-Carter extension is that we can adopt any 

likelihood function to estimate the parameters of the Lee-Carter model   from a chosen 

variable of interest (outcome variable), such as number of deaths, log mortality rates or 

mortality rates. Consequently, in this paper, the Poisson, binomial, negative binomial, 

Gaussian and beta distributions are tested, resulting in different likelihood functions to 

estimate the Lee-Carter parameters and to dynamically forecast the mortality rates. 

Using the proposed framework and several competing distributions, we can identify the 

best variable of interest and the best probability model to be used for forecasting 

mortality rates using the Lee-Carter model. 

Another potential advantage of our proposed framework in relation to the original Lee-

Carter model is that parameter estimation is accomplished in just one-step. Also 

mortality rate forecasting is derived from the model assumptions, via Monte Carlo 

simulation, without the need to  assume an auxiliary model for forecasting (usually 

ARIMA(0,1,1)), as it is usually the case for the Lee-Carter model. Thus, parameter 

estimation, signal extraction, and forecasting are obtained from a single model  (Creal at 

al. (2013)), differentiating our proposed model from the Lee-Carter model and its 

extensions, such as those by Brouhns et al. (2002) and Renshaw and Haberman (2006). 

Consequently, our approach preserves validity of inference that is lost in the original 

multi-step model of Lee-Carter and some of its extensions  

The remainder of the paper is organized as follows. The second section summarizes the 

Lee-Carter model. The third section presents the GAS models framework. In the fourth 

section, the proposed models for mortality rate forecasting are presented in details. In 

the fifth section, we apply the proposed models to the time series of mortality rates. The 

sixth section contains the conclusions. 

 

2. The original Lee-Carter model 

Lee and Carter (1992) proposed a single and efficient model for forecasting the central 

mortality rates:  

                                           (   )                                                              (1) 

for          and         ;  
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where 

    is the central mortality rate of    age   at time  ; 

   is time-varying parameter, which represents the common trend of the log of the 

mortality rates for all ages;  

   is an age-specific parameter, representing the sensitivity of the log of the mortality 

rates at age   to the time trend represented by   ; 

   is an age-specific intercept  ; and     represents the effects not captured by the model 

(errors), assumed to be i.i.d.   (    ) . Also, one needs to impose the constraints: 

∑   
 
      and ∑    

 
     , added to identify the model. Using these constraints one 

obtains the least squares estimator for   , given by   ̂  
∑    (   )
 
   

 
   

In the first step of the estimation, the unknown parameters    and    are estimated via 

singular value decomposition (SVD) of the matrix of centered age profiles (   (   )  

  ). At the second step, OLS is used to improve the fitting of   , the common trend, by 

minimizing the errors in the estimated number of deaths, and such adjustment, by 

construction, gives more weight to ages at which deaths are higher. To forecast the log 

mortality rates, the model needs a third step, which is obtained by maintaining the 

estimated values of     and    and forecasting the estimated time-varying parameter 

   , usually via ARIMA models. In Lee and Carter (1992), it was found that a random 

walk with drift is the most appropriate model for the evolution of     - the common 

trend on log mortality rates for all ages. 

3. Basic GAS models specification 

One of the advantages of using the GAS model framework when employing Lee-Carter 

model is that parameter estimation, signal extraction, and forecasting occur in a single 

unified step. Therefore, our approach conserves inference results that are lost in a multi-

step model, such as that of Lee-Carter. In addition, the Lee-Carter model is distribution 

free, while GAS models require one to choose, at the outset, a statistically sound 

conditional density for the variable under investigation.  As such, a properly fitted GAS 

model will never simulate values outside the chosen density’s support. 

A general description of GAS models is given in the sequel.  

Following Creal et al. (2013), the basic GAS model is defined in terms of a scalar   , 

the dependent variable of interest (outcome variable),    as the time-varying parameter 

vector, all at time t, and   as the vector of static parameters. At time , the available 

information set is *       + where: 

     * 
        +              , 
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where    *       + and    *       +. 

In GAS models    is a time series with known conditional probability model: 

                                               (            )                                                       (2) 

The time-varying parameter vector   , is updated according to a GAS(p,q) model: 

                                       ∑         
 
    ∑         

 
                                (3) 

where:  

   is a vector of constants; 

    and    are matrices that have appropriate dimensions for         and        , 

respectively; and 

   is the scaled score.  

The unknown elements of   ,   ,   and any fixed parameters of the distribution 

 (            ) are combined into a vector of static parameters,  .  The scaled score    

is a function of the past observations (  (            )) and is given by: 

                                                                                                                              (4) 

where 

   
     (            )

   
   is the score vector;                                                                   (5) 

      
   ,         ,     -     ⁄                                                                           (6) 

where, It is the conditional information matrix, and      denotes expectation with 

respect to the past information     . 

The scaling matrix    introduces additional flexibility to the model. As stated by Creal 

et al. (2013), different choices of d leads to different GAS models.  

In summary, in GAS models, when a new observation    comes in, the time-varying 

parameter vector    is updated for the next period     following the recursion given 

by equation (3). 

As shown by Creal et al. (2013), GAS models encompass many well-known 

observation-driven models, such as the GARCH model of Engle (1982), Bollerslev 

(1986), the ACD model of Engle and Russell (1998), and the ACI model of Russell 

(2001), and also most of the Poisson count data models considered by Davis et al. 

(2003). 



6 
 

Usually, some elements of the time-varying parameters vector have natural constraints. 

To overcome this situation and ensure that    will remain in its appropriate domain (e.g. 

positive for variance), it is common to adopt a suitable parameterization. For example, if 

           (  )       then it is natural to take   ̃     (  ).   

4. GAS models for mortality rates 

Consider     a generic outcome variable in the context of mortality forecasting, where   

is the age, and   , time. By assumption     has conditional density/probability mass 

function given by    (             )   Here following Lee- Carter, and adapting the 

ideas of  Creal et al. (2013), assume a factor model structure in which the       at time   

are cross-sectionally independent. Then conditional on the time-varying parameter 

   and on the information set     , it follows that the conditional distribution  

  (            )  will be given by: 

                            (            )  ∏   (             )
 
                          (7)  

In order to adapt the Lee-Carter model to the fully parametric GAS framework,   start 

with the general expression for the evolution of the log of the mortality rates as given by 

eq (1).    Assume that the term    in this equation, which represents the common trend 

for all age groups, is the time-varying parameter of our proposed GAS model, that is 

     . More specifically, adopt a GAS (1,1) mechanism for    (see eq. (3)), given by: 

                                                                                                   (8) 

where    is the scaled score of the likelihood, and           are static unknown 

parameters. Note that by making     on equation (8) turns our updating mechanism 

very similar to that originally assumed by Lee-Carter (1992). 

Given an assumed probability model for the outcome variable     given by 

  (             )  and using eqs. (4), (5) and (6) it is easy to see that the appropriate 

expressions for the scaled score    and the information matrix    are:  

                                       ∑    
 
                                         (9)  

where  

    
      (             )

   
                                                                                             (10) 

     
   ⁄ ,                                                                                                                     (11) 

where  

   ∑    
 
                                                                                                                    (12) 

with  



7 
 

        ,       -.                                                                                                      (13) 

For each age  , the derivation of the log of the probability model given in eq. (10), 

results in the “partial” score, from which it is possible to  obtain the expected value of 

       , using  eq. (13), resulting in the “partial” information matrix. With such   

expressions available, the scaled score matrix    (eq. 11) is readily obtained  

Finally, for a given choice of    (             ), in view of the hypothesis embodied 

in eq. (7), the likelihood function will be given by 

 ( )  ∏  (            )  

 

   

∏∏  (             )

 

   

 

   

 

From this, it follows that the log of the likelihood is given by: 

 ( )  ∑ ∑      (             )
 
   

 
                                               (14) 

In practice, to find maximum likelihood estimators appropriate non-linear optimization 

algorithms can be used, such as Broyden–Fletcher–Goldfarb–Shanno (BFGS, Broyden 

(1970), Fletcher (1970), Goldfarb (1970) and Shanno (1970)) or Berndt–Hall–Hall–

Hausman (BHHH, Berndt et al. (1974)). 

It should be noticed that every choice of a particular distribution   (             )   

results in a different updating equation for the common trend (eq. 8) (given that the 

expression for scaled score will change) and also on a different likelihood function ( ), 

as it can be seen through eq. (14). This will be made explicit in sub–sections 4.1 to 4.5 

when particular forms for   (             ) are assumed. It is also important to notice 

that the resulting updating mechanisms for    is constructed in such a way that the age-

specific parameters       weight the unique time-varying parameter and the elements 

used to obtain the scaled score at time  . 

The vector of static unknown parameters   is estimated by maximizing the log-

likelihood function with respect to   (eq. (14)). Thus, in the GAS extension of Lee-

Carter, parameter estimation is obtained in a single step. Multi step ahead forecasting of 

both the time-varying parameters and future observations are obtained by Monte Carlo 

simulation using the recursion on eq. (8). Consequently, our approach retains valid 

inference results that are lost in the original Lee-Carter and its extensions, ensuring that 

the extracted factors are related to the outcome variables of interest through the 

estimation and forecasting process (Creal at al., 2014). 

To model mortality rates using versions of the Lee-Carter model, it is assumed, like in 

its original formulation, that for any age group   at time   the force of mortality rates 

obeys the following relation:  

                                       (   )          for                                                 (15) 
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where   is the width of the age group.  It follows that the force of mortality rates is 

equal to the central mortality rates (       ). 

Since the GAS likelihood function has a closed form, we can adopt different probability 

distributions for the variable of interest    , extending the Lee-Carter model to 

distributions other than the lognormal. In the sequence, we propose and develop five 

different GAS models for forecasting mortality rates and related variables. 

4.1. Poisson GAS model for the number of deaths   

In the first proposed model the variable of interest, is the number of deaths (   ) of age 

  at time  , assumed to be independent realizations of a Poisson random variable, 

conditional on the number of people exposed to risk (   ), which will be known in real 

data applications. Thus  

                                       (            )          (   )                                           (16) 

where           (       ). Now, assuming that the mortality rate is      
   

   
 , 

it follows that, conditional on the knowledge of the number of people exposed to 

risk (   ),  the mean and variance of the mortality rate will be given, respectively, by: 

  (            )     (       );  

   (            )  
 

   
     (       )   

Using the Poisson assumption, it is easy to show that the corresponding “partial” score 

and information used in the GAS (1,1) updating mechanism (see eq 8) will  be given by 

    
      (            )

   
   (        )             ,       -  

  
       respectively. 

 

4.2. Binomial GAS model for the number of deaths  

The second GAS model still considers the number of deaths (   ) as the variable of 

interest, but now, conditional on the population size on the first day of the year (   ), 

    is assumed to have a binomial distribution : 

                              (   |        )      (       )                                           (17) 

where      is the probability of death for age   at time   and is linked to the common 

trend     through a logistic function     
 

       (       )
 . Given the population size 

on the first day of the year (   )  and the binomial assumption, the mean and the 

variance for the mortality rate are given by: 
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  (            )  
   

   

   (       )

     (       )
 ;  

   (            )  
   

   
 

   (       )

(     (       ))
  . 

Similar to the Poisson case, in order to implement the GAS (1,1) updating mechanism 

for    , it is necessary to evaluate both the “partial” score and the “partial” information, 

which are given by       (           )             
       (     )  respectively. 

4.3. Negative binomial GAS model for the number of deaths  

According to Delward et al. (2007), the over–dispersion observed in much mortality 

data can be appropriately tackled by assuming that the number of deaths has a negative 

binomial distribution conditioned on the number of people exposed to risk (   ). Using 

this result a negative binomial GAS model for the number of deaths is proposed: 

                              (            )     (      )                                                       (18) 

It is hoped that the extra parameter to be estimated for each age (  ), albeit fixed in 

time, may add flexibility, improving data fitting when compared to the Poisson GAS 

model. As in the Poisson distribution,   here it is also assumed that    (            )  

      (       ).   Then it follows that, conditional on the number of people exposed 

to risk (   )  the mean and variance of the mortality rate are given by: 

  (            )     (       )  
  (     )

      
;  

   (            )  
  (     )

(      ) 
 
   (       )

      
.  

Given the negative binomial assumption, it is not difficult to show that     

  ,(      )  (     )  -          
 
 (     )  the necessary expressions to derive 

the GAS(1,1) mechanism.  

4.4. Gaussian GAS model for the log of mortality rate  

As in the Lee-Carter model, here it is assumed that the log of mortality rates follows a 

Gaussian distribution, but now the errors (     ) are heteroscedastic with respect to the 

ages  , i.e.,     ~ i.i.d.  (    
 ).  It then follows that the proposed model for the log 

mortality rates is given by:  

                                                     (        )  (      
 )                                       (19) 

Where      (   (   )     )         . From this it follows that the mortality 

rate will be log normally distributed, that is,  (        )    (      
 ), from which it 

follows that: 
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  (        )     .        
  
 

 
/;  

    (        )  ,   (  
 )   -[   (  

   (       ))]. 

As before, we need to derive expressions to obtain the full updating equation for   . It 

can be shown that under Gaussianity, these take the form 

      
(   (   )    )

   
               

   
    

 

4.5. Beta GAS model for mortality rate   

In our final proposed GAS model, the variable of interest is also the mortality rate for 

age   at time  ,    , assumed to follow a GAS beta model, with conditional mean given 

by  (        )     (       ). From this it follows that the first parameter of each 

beta distribution is time-varying, being dependent on   : 

                                      (        )     (      )                                                    (20) 

where: 

   (        )  
   

      
    (       )  with       .

   (       )

     (       )
/;  

    (        )  
     

(      ) (        )
 . 

In this case, it can be shown that the associated quantities needed to fully specify the 

GAS (1,1) mechanism are: 

      0.
   (      )

  
/1 ,   (   )   (        )   (     )-; 

      
 0.

   
 (      )

 

  
 /1 ,  (        )   (     )-, 

where  (   )  
      ( )

   
         ,  ( ) being the gamma function. 

 

4.6. Summary of the GAS updating mechanisms   

All our proposed GAS models share a common statistical feature, which brings extra 

flexibility in data fitting: both the conditional mean and conditional variance of the 

distribution of the mortality rates of each age are time-varying. Also, in practice one 

does not need an extra source of data, other than the mortality rates time series 

themselves when fitting either the log Normal or beta models. Furthermore, to 
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implement the proposed GAS models we do not impose the constraints used by Lee and 

Carter (1992) (eq.(1)).  Table 1 summarizes the different proposed GAS models. 

Notice that the discrete distribution models here proposed, namely, Poisson, binomial 

and negative binomial are originally specified for the number of deaths for age   at time 

 ,    , as was shown in sub–sessions 4.1, 4.2 and 4.3. Nevertheless, it is possible to 

obtain the distribution for the mortality rates     from these discrete models, 

conditional on the number of people exposed to risk (    - for Poisson and negative 

binomial models) and on the population size on the first day of the year (     for 

binomial model). From any of the proposed GAS models, based either on discrete or 

continuous distributions, it is then possible to derive predictions for death rates for 

different ages. 

5. Applications 

The proposed GAS models are applied to time series of mortality rates of the male 

population of the US, UK, Sweden and Japan. The data is from the Human Mortality 

Database2 covering the period from 1960 to 2010, considering the following age groups: 

30-34 years, 35-39 years, 40-44 years, 45-49 years, 50-54 years, 55-59 years, 60-64 

years, 65-69 years, 70-74 years, 75-79 years, 80-84 years, 85-89 years and 90-94 years.

                                                           
2
 Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for 

Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.de (data 

downloaded on February 26, 2012). 

http://www.mortality.org/
http://www.humanmortality.de/
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Table 1 - Summary of the proposed GAS models  

Probability model 
Variable of 

interest (   ) 
Partial Score (   ) 

Partial Information matrix 

(   ) 

Poisson (   ) 
 

        
   

    
 

       (        )   
     

binomial (       ) 
 

(
   
   
)   

   (   )      

       (           )      
       (     ) 

negative binomial (  ,    ) 
 

(
        

   
)   

  (     )
    

       ,(      )  (     )  -   
 (     )   

Gaussian (      
 ) 

 

   (
  (       )

 

   
 ⁄ )

√    
 

 

   (   )   
(   (   )     )

    
       

   
   

Beta (      ) 
 

 (      )

 (   ) (  )
 [   

     (     )
    ] 

      *(
   (      )

  
)+ ,   (   )   (        )   (     )- 

  
 0.

   
 (      )

 

  
 /1 ,  (    

    )   (     )-, 

 

 

Note:     is mortality rate for age   at time  ;     is the probability of death for age   at time  ; and     is the number of deaths for age   at time  .
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We chose to use these thirteen 5-year age groups because these cover the public that 

participates in pension plans and life insurance. By restricting the number of age groups 

the number of parameters to be estimated non linearly is reduced. The last 5 years of 

data has been omitted for out-of-sample validation. In the sequel the results for the 

fitting of the US data are presented. The analysis for the remaining countries (the UK, 

Sweden and Japan) can be found in the Appendix. Figure 1 presents the time series of 

the observed US mortality rates for four age groups, namely: 40-44 years, 50-54 years, 

60-64 years and 70-74 years. The observed downward trends for all these series confirm 

the well-established fact of the steady decline of US mortality rates in the last decades. 

 

Figure 1. Observed mortality rates. The top-left graph is for the 40-44 age group, the 

top-right graph is for the 50-54 age group, the bottom–left graph is for the 60-64 age 

groups, and the bottom-right graph is for the 70-74 age group. 

 

Using the AIC reported for each of the models fitted to the number of deaths, as shown 

in Table 2, it can be concluded that among the models with discrete distribution 

(Poisson, binomial and negative binomial), the negative binomial is the best choice, 

since it minimizes the AIC. This may be explained by the extra static parameter   , 

whose improvement brought in model fitting outperforms its contribution to increase 

model complexity.  Among the models with continuous distribution, the AIC is -

2,059.27 for the Gaussian model and and -6,709.63 for the beta model. Nevertheless, 

these values are not directly comparable given that the   Gaussian model is fitted to log 

mortality rates while the beta model to mortality rates.  
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Table 2.  AIC for the different GAS models with discrete distributions fitted to the 

numbers of deaths  

Model AIC 

Poisson 75,495.15 

binomial 79,652.75 

negative 

binomial 
11,102.11 

 

Estimated values of the static parameters for all GAS models considered in our study 

are shown in the Table A1 in the Appendix. Using Student’s t-test, we can reject the 

null hypotheses that the static parameters are zero (p-value   10
-9

 for all estimated 

parameters) at 1% level or less. Quantile residuals for the different GAS models 

considered in this paper are tested for normality, homoscedasticity and absence of serial 

correlation using the Jarque-Bera test, the Box-Ljung test in the squared residuals, and 

the Box-Ljung test, respectively. Adopting a significance level of 1%,   the hypothesis 

of uncorrelated residuals, for all estimated models is rejected. This unsatisfactory 

behavior may be explained by the fact that the   common trend used to explain the 

variation on mortality time series for all age groups, adapted from the Lee-Carter model, 

in all our GAS models, seems insufficient to capture all linear dependence of these time 

series.  

On the other hand, it can be seen from Table 3, diagnostic tests on the quantile residuals 

reject neither normality nor homoscedasticity for the majority of age groups. 

Nevertheless, for the first four age groups (see Figure 1, for the 40-44 years age group), 

the squared residuals still show some dependence. When all the proposed GAS models 

are compared using residual diagnostics, the negative binomial is the best model for the 

number of deaths and the beta model for mortality rates.   

 

Table 3 

Diagnostic tests of normality and homoscedasticity based on quantile residuals: p-

values 

Age 

group 

(years) 

Poisson Binomial Negative binomial Gaussian Beta 

norm. homos. norm. homos. norm. homos. norm. homos. norm. homos. 

30-34 0.181 0.000 0.276 0.000 0.196 0.000 0.168 0.000 0.175 0.000 

35-39 0.119 0.000 0.117 0.000 0.245 0.000 0.262 0.000 0.229 0.000 

40-44 0.073 0.000 0.241 0.000 0.904 0.000 0.895 0.000 0.898 0.000 

45-49 0.108 0.000 0.133 0.000 0.311 0.000 0.309 0.000 0.302 0.000 

http://en.wikipedia.org/wiki/Significance_level
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50-54 0.135 0.006 0.088 0.000 0.000 0.986 0.000 0.984 0.000 0.992 

55-59 0.085 0.116 0.132 0.000 0.527 0.012 0.512 0.014 0.363 0.181 

60-64 0.109 0.002 0.096 0.000 0.274 0.475 0.268 0.481 0.210 0.437 

65-69 0.048 0.000 0.000 0.000 0.265 0.024 0.255 0.022 0.190 0.006 

70-74 0.001 0.350 0.387 0.000 0.135 0.350 0.116 0.380 0.211 0.101 

75-79 0.030 0.109 0.253 0.000 0.483 0.115 0.464 0.111 0.598 0.136 

80-84 0.000 0.161 0.339 0.000 0.089 0.608 0.085 0.586 0.129 0.312 

85-89 0.024 0.508 0.339 0.000 0.432 0.067 0.465 0.065 0.504 0.056 

90-95 0.203 0.173 0.241 0.000 0.376 0.260 0.386 0.186 0.371 0.095 

Table 4 reports the mean absolute percentage error (MAPE), both in sample and out-of-

sample, for the GAS fitted models.  The beta and binomial GAS models are the most 

accurate, in sample and out-of-sample, respectively. In addition, forecasting 

performance amongst the competing models is also compared using the Diebold-

Mariano (DM) test (Diebold and Mariano, 2002) via the MAPE loss function.   In DM 

test the null hypothesis   of no difference between forecasts   cannot be rejected in the 

period in sample. Nevertheless, in the out-of-sample period, the test would not reject 

that the binomial model is more accurate than the other competing models. 

 

Table 4 

MAPE values (%) for the proposed GAS models, in sample and out-of-sample. 

 

Age 

groups 

(years) 

Poisson   Binomial 
Negative 

binomial 
Gaussian Beta 

in 

sample 

out-of-

sample 

in 

sample 

out-of-

sample 

in 

sample 

out-of-

sample 

in 

sample 

out-of-

sample 

in 

sample 

out-of-

sample 

30-34 9.68% 12.59% 10.01% 11.98% 9.46% 12.07% 9.44% 10.29% 9.46% 12.42% 

35-39 8.53 14.06 8.38 15.64 8.37 13.83 8.33 12.71 8.32 13.97 

40-44 5.79 4.12 5.34 5.91 5.59 4.19 5.59 3.98 5.33 4.00 

45-49 4.64 7.85 4.60 5.47 4.44 7.55 4.43 7.76 3.98 8.07 

50-54 2.98 13.64 3.18 12.39 2.72 12.73 2.71 12.91 2.28 12.57 

55-59 2.07 8.03 1.84 6.80 2.04 6.57 2.06 6.60 2.20 5.21 

60-64 2.11 1.59 1.95 0.31 2.09 3.17 2.10 3.09 2.22 4.60 

65-69 2.19 6.09 2.14 4.68 2.20 7.29 2.22 7.18 2.38 8.85 

70-74 2.29 10.43 2.41 10.12 2.36 11.64 2.35 11.54 2.49 13.57 
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75-79 2.04 7.87 2.13 9.08 2.03 9.22 2.04 9.16 2.13 10.56 

80-84 2.07 11.59 2.24 12.89 2.08 12.90 2.08 12.81 2.16 13.76 

85-89 3.12 14.53 3.24 13.90 3.01 14.81 3.02 14.75 2.76 13.68 

90-95 3.83 9.95 3.81 8.50 3.58 9.21 3.59 9.15 3.48 8.92 

Total 3.95 9.41 3.94 9.05 3.84 9.63 3.84 9.38 3.78 10.00 

Since the negative binomial and beta GAS models produced the best results using AIC 

and diagnostic tests, the equality of their out-of-sample MAPE is tested via DM.  The 

results suggest that for the US data, the negative binomial model outperforms the beta 

model. To provide further evidence of these findings we also applied our proposed 

framework to forecast central mortality rates for others countries than the US, namely, 

Japan, Sweden and UK. The data is also obtained from the Human Mortality Database, 

considering the same period and the 5-year age groups used in the US example. Tables 

A2, A3 and A4 in the Appendix depict out of sample MAPE values for these countries. 

The findings are similar to those encountered when analyzing Table 4 for the US 

mortality data: the negative binomial GAS model produces better forecasting than the 

beta model in two among the three countries. 

For the sake of completeness the standard Lee-Carter model (using three steps to 

estimate and forecast the mortality rates) has also been fitted to the different age groups 

of the US male mortality data. Averaging the MAPEs of the different age groups result 

in 3.19% for the in-sample period and 7.19% for the out-of-sample period. Figure 2 

shows the time series of the common trend    (the time-varying parameter) for the US 

data, estimated both by the negative binomial GAS and the Lee-Carter model. It can be 

seen that the negative binomial GAS model produces a smoother trend than the LC 

model, which may be explained by the fact that in the latter the common trend is re-

estimated several times, in order to minimize the error associated with the number of 

deaths for each age group.    
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Figure 2. Time series of the mortality common trend for the US data   (  ) estimated by 

the negative binomial GAS model (solid line) and by the standard Lee-Carter model 

(dashed line). 

In forecasting mortality time series, it is important to verify whether the model is able to 

capture the volatility of the time series, given that the distribution of forecasted 

mortality rates is used to measure the risk–based capital, which is evaluated using the 

tail of the loss distribution. In our application the models that better capture the 

volatility of the mortality rates time series are the Gaussian and the negative binomial 

GAS models. The first model estimates constant parameters for each log mortality time 

series (  ), while the negative binomial model, as stated by Deward et al. (2007), takes 

into account the over–dispersion of the mortality data. To illustrate this behavior, 

Figures 3 and 4 display the observed mortality rates and the predicted values for the out-

of-sample period (from 2006 to 2010) and their 95% confidence interval for two 

representative age groups, 40-44 and 60-64 years. The confidence intervals are larger 

for the Gaussian and negative binomial models and the majority of their observed 

mortality rates fall within these intervals, contrary to what happens to the others 

competing models. 
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Figure 3. Observed and forecasted US male mortality rates for 40-44 years age group. 

Observed mortality rates up to 2005 (solid lines); predicted value of mortality rates for 

2006 to 2010 (dashed lines); and its 95% confidence interval (dotted lines); and 

observed surrender rates in 2006 to 2010 (circles). 
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Figure 4. Observed and forecasted US male mortality rates for 60-64 years age group. 

Observed mortality rates up to 2005 (solid lines); predicted value of mortality rates for 

2006 to 2010 (dashed lines); and its 95% confidence interval (dotted lines); and 

observed surrender rates in 2006 to 2010 (circles). 

Given the results presented in this section, it can be concluded that the negative 

binomial model is the most appropriate for forecasting mortality rates amongst the GAS 

extensions of the Lee-Carter model.  

6. Conclusion 

In this paper the framework of the recently developed Generalized Autoregressive Score 

models has been applied to forecast mortality rates for several countries.  The proposed 

GAS models extend the Lee-Carter model by considering flexible distribution 

assumptions, and present the advantage of producing forecasts in a single step, while 

Lee-Carter is a three-step model. 

Using the GAS framework a wide class of non-Gaussian distributions can be chosen to 

model an appropriate variable in the context of mortality rate forecasting, resulting in 

different likelihood functions to estimate the parameters of the Lee-Carter model. In this 

paper five different distributions to forecast mortality rates via the Lee-Carter model 

have been proposed: Poisson, binomial, negative binomial, Gaussian and beta.  

The proposed GAS models were applied to the time series of mortality rates for the 

male population of the United States, U.K, Sweden and Japan in the period from 1960 

to 2010. Using AIC, diagnostic tests and measures of forecast accuracy, the negative 

binomial (conditional on the number of deaths for each age group) was chosen as the 

most appropriate model to forecast mortality rates for those countries.  

Due to the flexibility of the GAS framework, the proposed models can be extended in 

several directions. For example, a multivariate distribution for the mortality data can be 

assumed and the common trend for mortality rates can be extended by including an 

extra parameter in order to capture extra linear dependence present in the time series of 

mortality rates. We believe that GAS models have a huge potential for the successful 

modeling of actuarial time series, which require models with time varying parameters 

and non-Gaussian distributions.  
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Appendix 

 

Table A1: Estimated values for the static parameters (vector  ) –US data. 

Parameter Poisson Binom. NB Gaussian Beta Parameter Poisson Binom. NB Gaussian Beta 

   -6.236 -6.170 -6.197 -6.196 -6.148     0.050 0.088 0.059 0.109 0.029 

   -5.965 -5.882 -5.905 -5.902 -5.838     0.038 0.068 0.044 0.082 0.022 

   -5.606 -5.491 -5.521 -5.514 -5.424     0.020 0.037 0.024 0.044 0.013 

   -5.190 -5.040 -5.078 -5.067 -4.949     0.006 0.013 0.010 0.018 0.005 

   -4.765 -4.583 -4.628 -4.614 -4.478   -0.235 -0.144 -0.195 -0.106 -0.394 

   -4.336 -4.146 -4.195 -4.180 -4.048   0.009 0.004 0.065 0.050 0.151 

   -3.894 -3.698 -3.757 -3.741 -3.611   1.000 1.000 1.000 1.000 1.000 

   -3.492 -3.298 -3.365 -3.352 -3.233    5.139 1.736 2.627 1.334 1.709 

   -3.081 -2.885 -2.969 -2.957 -2.855          - - 78.00 0.112 40,687.636 

    
-2.680 -2.471 -2.581 -2.571 -2.480          - - 102.011 0.099 41,003.754 

    -2.233 -2.006 -2.158 -2.151 -2.082          - - 201.643 0.071 56,870.628 

    -1.800 -1.548 -1.758 -1.755 -1.711          - - 386.618 0.051 84,911.538 

    -1.408 -1.084 -1.383 -1.383 -1.366          - - 869.858 0.034 149,642.041 

   0.023 0.040 0.028 0.055 0.014          - - 1,716.415 0.025 101,229.239 

   0.031 0.051 0.038 0.072 0.019          - - 1,811.139 0.024 75,196.545 

   0.044 0.071 0.053 0.099 0.027          - - 1,445.833 0.027 39,388.554 

   0.059 0.094 0.070 0.130 0.036          - - 1,094.950 0.031 18,642.523 

   0.070 0.113 0.084 0.155 0.042             - - 1,604.502 0.025 17,072.619 

   0.071 0.116 0.085 0.156 0.042             - - 1,562.979 0.026 10,792.517 

   0.070 0.116 0.083 0.153 0.041             - - 811.938 0.035 3,739.627 

   0.064 0.109 0.077 0.142 0.038             - - 422.383 0.049 920.788 

   0.057 0.098 0.067 0.124 0.033       

Note:   parameters belong to negative binomial GAS model,   parameters belong to 

Gaussian GAS model and   parameters belong to beta GAS model. 
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Table A2: Out of sample MAPE values (%) for the proposed GAS models applied to 

Japan mortality rates. 

Age 

groups 

(years) 

Poisson binomial 
negative 

binomial 
Gaussian beta 

30-34 21.66% 15.72% 12.33% 14.50% 15.59% 

35-39 17.09 11.55 8.13 10.49 10.19 

40-44 10.11 5.07 2.57 6.42 1.89 

45-49 2.27 3.07 4.13 1.84 5.05 

50-54 1.78 6.30 7.06 4.43 6.19 

55-59 4.00 1.89 1.34 1.01 1.26 

60-64 3.58 0.63 1.95 0.84 1.10 

65-69 1.62 4.05 5.73 5.38 4.55 

70-74 0.81 5.64 6.85 4.12 7.52 

75-79 2.46 4.36 4.79 1.85 5.83 

80-84 1.81 6.75 7.06 5.11 8.30 

85-89 3.70 6.76 7.05 5.65 7.74 

90-95 5.76 4.41 3.96 3.26 5.43 

Total 5.90 5.58 5.62 4.99 6.20 

 

Table A3: Out of sample MAPE values (%) for the proposed GAS models applied to 

Sweden mortality rates. 

 

Age 

groups 

(years) 

Poisson binomial 
negative 

binomial 
Gaussian beta 

30-34 12.12% 12.22% 13.69% 12.74% 12.59% 

35-39 6.03 5.25 5.12 5.71 5.97 

40-44 2.18 2.06 1.91 2.48 2.34 

45-49 1.47 1.73 2.51 1.37 1.36 

50-54 8.33 8.82 10.03 8.87 9.46 

55-59 4.75 5.12 7.04 6.23 5.87 

60-64 4.14 4.32 6.37 5.43 5.25 

65-69 2.65 1.77 1.76 2.58 2.37 

70-74 4.17 3.13 2.71 3.97 3.65 

75-79 2.17 1.19 1.14 1.93 1.77 

80-84 1.52 1.78 1.30 1.74 1.67 

85-89 10.51 10.61 17.46 17.41 18.98 

90-95 6.73 7.01 20.60 16.99 14.08 

Total 5.14 5.53 7.07 6.72 6.57 
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Table A4: Out of sample MAPE values (%) for the proposed GAS models applied to the 

UK mortality rates. 

 

Age 

groups 

(years) 

Poisson binomial 
negative 

binomial 
Gaussian beta 

30-34 4.72% 4.89% 4.83% 4.86% 4.84% 

35-39 12.96 12.86 12.73 12.67 13.38 

40-44 17.29 15.78 15.30 15.37 16.72 

45-49 15.11 12.30 12.16 12.41 13.67 

50-54 14.14 11.82 11.70 11.70 12.25 

55-59 11.64 9.23 9.58 9.56 9.08 

60-64 2.41 1.59 1.43 1.46 1.71 

65-69 2.96 3.34 4.62 4.70 6.27 

70-74 9.72 10.18 11.36 11.42 13.10 

75-79 9.41 9.49 11.15 11.18 12.54 

80-84 7.37 7.73 9.01 9.07 10.14 

85-89 14.55 14.86 19.64 18.46 20.81 

90-95 8.34 8.80 11.41 10.60 11.66 

Total 10.05 10.29 10.38 10.27 11.23 

 


